1	(a (i)	correct -O- linkage; correct unit and continuation -O-□- (minimum);	[1] [1]
	(ii)	any name or correct formula of a (strong) acid / H^+ ;	[1]
	(iii)	contain carbon hydrogen and oxygen /C, H and O;	[1]
	(b) (i)	glucose \rightarrow ethanol + carbon dioxide	[1]
	(ii)	yeast is catalyst / provides enzymes / speeds up reaction / too slow without yeast; yeast cells grow / multiply / reproduce / undergo budding / breed;	[1] [1]
	(iii)	 heat or high temperature would kill yeast (cells) / heat or high temperature dena enzymes; not: enzyme killed / denatures yeast reduces rate of reaction / slows reaction / (yeast or enzyme) no longer catalyses catalyst / stops reaction / no more product; 	
	(c) (i)	would produce carbon dioxide or carboxylic or organic acids (if oxygen is present prevent aerobic respiration / so products are not oxidised / anaerobic bacteria can with oxygen;	:) / to 't live [1]

(ii) fossil fuels have a reduced need / conserved / no need to import / will last longer / cracking hydrocarbons to make methane no longer required; (methane) is renewable / carbon neutral; reduce pollution of water or sea / prevents visual pollution / prevents need for waste disposal or accumulation (accept: any methods of waste disposal) / so that waste is recycled; any two

2	(a)	(i)	rate of reaction; influenced by light / only happens in light; or: turns light into chemical energy = [2] accept: light is catalyst = [1]	[1] [1]
		(ii)	reduction of silver halides; they are reduced to silver / $2AgCl \rightarrow 2Ag + Cl_2$; appropriate importance given; or: photosynthesis; correct comment about chemistry carbon dioxide to carbohydrates / carbon dioxide to oxygen; anything sensible e.g. its role in the food chain or decrease greenhouse effect or oxygen for respiration; or: chlorination; making chloroalkanes; appropriate importance given;	[1] [1] [1]
	(b)	(i)	pressure would move position of equilibrium to right / increase yield of $COCl_2$; increase pressure favours side with less (gas) molecules / smaller volume;	[1] [1]
		(ii)	increase temperature favours endothermic reaction; so less products/reduce yield;	[1] [1]
		(iii)	keeps rate high / increase rate at lower temperatures;	[1]
	(c)	eac 4 e 2 nt	ch chlorine 1 bp and 3 nbps; between carbon atom and oxygen atom; ops on oxygen atom;	[1] [1] [1]

[Total: 13]

3	(a)	addition – polymer only product / only one product accept monomer has C=C accept monomer and polymer have same empirical formula accept no loss of material in polymerisation not only one monomer	[1]
		condensation – polymer and water / small molecule formed	[1]
	(b)	-CH ₂ – CC <i>l</i> ₂ - repeat unit correct COND continuation	[1] [1]
	(c)	CH ₂ =CHOOCCH ₃	[1]
	(d)	-OC(CH ₂) ₄ CONH(CH ₂) ₆ NH- COND amide correct linkage correct repeat units continuation not NH ₂ or COOH endings	[1] [1] [1]

[Total:	80]
---------	-----

(a) (i)	molecule / unit / simple compound / building block and used to make a	[1]
	polymer / big molecule / long chain / macromolecule	
	formation of a polymer / big molecule / long chain / macromolecule or joining of monomers and elimination / removal / formation of a simple or small molecule / H_2O / HCl note: two points needed for 1 mark in both parts	[1]
(ii)	-O- linkage three correct monomer units continuation	[1] [1] [1]
(b) (catalyst and from living organism accept: biological catalyst / protein catalyst	[1]
(ii)	enzyme denatured / destroyed	[1]
(iii)	chromatography locating agent / description of locating agent measure R _f / compare with standards	[1] [1] [1]

4

5	(a	(i)	many (simple) molecules form one (large) molecule / monomer molecules polymer molecule	form one [1]
		(ii)	addition - polymer is the only product	[1]
			accept - $nX \rightarrow Xn$ condensation polymer and simpler molecules formed accept $nX \rightarrow Xn + nHCl/H_2O$	[1]
	(b)		$C_{12}H_{26} \rightarrow C_8H_{18} + 2C_2H_4$ / any other correct version	[1]
		(ii)	ethane and chlorine give range of products / ethene more readily available than ethane / waste half chlorine as hydrogen chloride / ethene more reactive than ethane	[1]
	((iii)	electrolysis	[1]
				[']
		(17)	must have three correct units cond continuation	[1] [1]
				[Total: 9]

(a (i)	lighter / light / lightweight / lower density does not corrode / rust / oxidised ignore cheaper / easier to mould	[1] [1]
(ii)	credit any two sensible suggestions e.g. rope / clothing / netting / string / carpets / fis line / fishing nets / parachutes / tyres / tents / bottles / thread / umbrellas / curta toothbrushes / cassettes / video tapes	hing ins / [2]
(iii)	non-biodegradeable / do not rot / do not decompose / persist for years / accumulate landfill sites limited / getting filled up visual pollution danger to fish / animals (burn to form) toxic gases / harmful gases / pollutant gases / acidic gases / CO / H HF / HCN not oxides of nitrogen / sulfur	-1C1 /
	any three	[3]
(b) (propene / propylene accept prop-1-ene	[1]
	CH ₃ -CH=CH ₂ double bond must be shown	[1]
(ii)	correct repeat unit (one or more whole repeat units must be given) cond continuation	[1] [1]
(c) (amide / peptide / polypeptide	[1]
(ii)	protein / polypeptide	[1]
(iii)	$H_2N(CH_2)_6NH_2$ HOOC(CH ₂) ₈ COOH	[1]

[Total: 15]

6